Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 42(7): 1582-1592, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38336558

RESUMO

Clostridioides difficile infection (CDI) is a serious healthcare-associated disease, causing symptoms such as diarrhea and pseudomembranous colitis. The major virulence factors responsible for the disease symptoms are two secreted cytotoxic proteins, TcdA and TcdB. A parenteral vaccine based on formaldehyde-inactivated TcdA and TcdB supplemented with alum adjuvant, has previously been investigated in humans but resulted in an insufficient immune response. In search for an improved response, we investigated a novel toxin inactivation method and a novel, potent adjuvant. Inactivation of toxins by metal-catalyzed oxidation (MCO) was previously shown to preserve neutralizing epitopes and to annihilate reversion to toxicity. The immunogenicity and safety of TcdA and TcdB inactivated by MCO and combined with a novel carbohydrate fatty acid monosulphate ester-based (CMS) adjuvant were investigated in rabbits. Two or three intramuscular immunizations generated high serum IgG and neutralizing antibody titers against both toxins. The CMS adjuvant increased antibody responses to both toxins while an alum adjuvant control was effective only against TcdA. Systemic safety was evaluated by monitoring body weight, body temperature, and analysis of red and white blood cell counts shortly after immunization. Local safety was assessed by histopathologic examination of the injection site at the end of the study. Body weight gain was constant in all groups. Body temperature increased up to 1 ˚C one day after the first immunization but less after the second or third immunization. White blood cell counts, and percentage of neutrophils increased one day after immunization with CMS-adjuvanted vaccines, but not with alum. Histopathology of the injection sites 42 days after the last injection did not reveal any abnormal tissue reactions. From this study, we conclude that TcdA and TcdB inactivated by MCO and combined with CMS adjuvant demonstrated promising immunogenicity and safety in rabbits and could be a candidate for a vaccine against CDI.


Assuntos
Compostos de Alúmen , Toxinas Bacterianas , Compostos de Boro , Cefalosporinas , Clostridioides difficile , Infecções por Clostridium , Animais , Coelhos , Adjuvantes Imunológicos , Proteínas de Bactérias , Vacinas Bacterianas/efeitos adversos , Peso Corporal , Infecções por Clostridium/prevenção & controle , Enterotoxinas , Toxoides
2.
Poult Sci ; 103(1): 103175, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029604

RESUMO

Poultry production is an important agricultural sector for human food worldwide. Chicks after hatch often face health problems leading to economic losses that are deleterious for breeders. Avian defensin 2 (AvBD2) is a prominent host defense peptide of the intestinal mucosa of cecum and is involved in the resistance of poultry to bacterial pathogens. This peptide could thus represent an innate immunity marker of robustness of birds. To test this hypothesis by comparing fast-growing and slow-growing lines in different conditions of breeding, the chick's cecal AvBD2 content was analyzed according to animal quality and immunity indicators. Chick's cecal tissue sections labeled by immunohistochemistry with newly developed specific antibodies revealed the localization of AvBD2 in the mucosa with high individual variability, without showing differences attributable to quality indicators, but interestingly showing inverse correlation with seric IgM levels in the fast-growing line. The availability of our anti-AvBD2 antibodies to the scientific community opens perspectives to identify the cellular sources of this defensin in the cecal mucosa and to investigate the organization and function of innate immune arsenal of birds.


Assuntos
Galinhas , Doenças das Aves Domésticas , Animais , Humanos , Imunidade Inata , Mucosa Intestinal/microbiologia , Bactérias , Defensinas , Ceco/microbiologia , Doenças das Aves Domésticas/microbiologia
3.
Hepatol Commun ; 7(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938097

RESUMO

BACKGROUND: Hepatitis E virus (HEV) is a zoonotic virus transmitted by pig meat and responsible for chronic hepatitis E in immunocompromised patients. It has proved challenging to reproduce this disease in its natural reservoir. We therefore aimed to develop a pig model of chronic hepatitis E to improve the characterization of this disease. METHODS: Ten pigs were treated with a tacrolimus-based regimen and intravenously inoculated with HEV. Tacrolimus trough concentration, HEV viremia, viral diversity, innate immune responses, liver histology, clinical disease and biochemical markers were monitored for 11 weeks post-infection (p.i.). RESULTS: HEV viremia persisted for 11 weeks p.i. HEV RNA was detected in the liver, small intestine, and colon at necropsy. Histological analysis revealed liver inflammation and fibrosis. Several mutations selected in the HEV genome were associated with compartmentalization in the feces and intestinal tissues, consistent with the hypothesis of extrahepatic replication in the digestive tract. Antiviral responses were characterized by a downregulation of IFN pathways in the liver, despite an upregulation of RIG-I and ISGs in the blood and liver. CONCLUSIONS: We developed a pig model of chronic hepatitis E that reproduced the major hallmarks of this disease. This model revealed a compartmentalization of HEV genomes in the digestive tract and a downregulation of innate immune responses in the liver. These original features highlight the relevance of our model for studies of the pathogenesis of chronic hepatitis E and for validating future treatments.


Assuntos
Hepatite E , Humanos , Suínos , Animais , Regulação para Baixo , Viremia , Tacrolimo , Imunidade Inata/genética
4.
Front Cell Infect Microbiol ; 13: 1250080, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680750

RESUMO

Introduction: Coccidiosis, a disease caused by intestinal apicomplexan parasites Eimeria, is a threat to poultry production. Eimeria tenella is one of the most pathogenic species, frequently causing a high prevalence of opportunistic infections. Objective: The objective of this study is to investigate the role of the microbiota in the pathogenesis of severe Eimeria tenella infection. Methods: We have previously shown that microbiota can promote parasite development. To study the effect of the microbiota on the pathogenesis of this infection, we used an experimental condition (inoculum of 10 000 oocysts E. tenella INRAE) in which the parasite load is similar between germ-free and conventional broilers at 7 days post-infection (pi). Thirteen conventional and 24 germ-free chickens were infected. Among this latter group, 12 remained germ-free and 12 received a microbiota from conventional healthy chickens at 4 days pi. Caeca and spleens were collected at 7 days pi. Results: Our results demonstrated caecal lesions and epithelium damage in conventional chickens at 7 days pi but not in germ-free infected chickens. Administration of conventional microbiota to germ-free chickens partially restored these deleterious effects. At day 7 pi, both infected conventional and germ-free chickens exhibited increased gene expression of inflammatory mediators, including IL15, IFNγ, TNFα and the anti-inflammatory mediator SOCS1, whereas the inflammatory mediators CXCLi2, CCL20, IL18, CSF1, NOS2, PTGS2, IL1ß, IL6, the receptor CCR2, and the anti-inflammatory mediators TGFß1 and IL10 were upregulated only in infected conventional chickens. Notably, the IL18, PTGS2 gene expression was significantly higher in the infected conventional group. Overall, the inflammatory response enhanced by the microbiota might be in part responsible for higher lesion scores. Epithelial tight junction protein gene expression analysis revealed a significant upregulation of CLDN1 with the infection and microbiota, indicating a potential loss of the intestinal barrier integrity. Conclusion: These observations imply that, during E. tenella infection, the caecal microbiota could trigger an acute inflammatory response, resulting in a loss of intestinal integrity. Increase in bacterial translocation can then lead to the likelihood of opportunistic infections. Hence, modulating the microbiota may offer a promising strategy for improving poultry gut health and limiting caecal coccidiosis.


Assuntos
Coccidiose , Eimeria tenella , Animais , Eimeria tenella/genética , Galinhas , Ciclo-Oxigenase 2 , Interleucina-18 , Inflamação , Coccidiose/veterinária
5.
J Anim Sci Biotechnol ; 14(1): 100, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420291

RESUMO

BACKGROUND: Mammary gland (MG) infections (mastitis) are frequent diseases of dairy cows that affect milk quality, animal welfare and farming profitability. These infections are commonly associated with the bacteria Escherichia coli and Staphylococcus aureus. Different in vitro models have been used to investigate the early response of the MG to bacteria, but the role of the teat in mastitis pathogenesis has received less attention. In this study, we used punch-excised teat tissue as an ex vivo model to study the immune mechanisms that arise early during infection when bacteria have entered the MG. RESULTS: Cytotoxicity and microscopic analyses showed that bovine teat sinus explants have their morphology and viability preserved after 24 h of culture and respond to ex vivo stimulation with TLR-agonists and bacteria. LPS and E. coli trigger stronger inflammatory response in teat when compared to LTA and S. aureus, leading to a higher production of IL-6 and IL-8, as well as to an up-regulation of proinflammatory genes. We also demonstrated that our ex vivo model can be applied to frozen-stored explants. CONCLUSIONS: In compliance with the 3Rs principle (replacement, reduction and refinement) in animal experimentation, ex vivo explant analyses proved to be a simple and affordable approach to study MG immune response to infection. This model, which better reproduces organ complexity than epithelial cell cultures or tissue slices, lends itself particularly well to studying the early phases of the MG immune response to infection.

6.
Am J Respir Cell Mol Biol ; 65(4): 378-389, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34102087

RESUMO

Excessive lung inflammation and airway epithelial damage are hallmarks of human inflammatory lung diseases, such as cystic fibrosis (CF). Enhancement of innate immunity provides protection against pathogens while reducing lung-damaging inflammation. However, the mechanisms underlying innate immunity-mediated protection in the lung remain mysterious, in part because of the lack of appropriate animal models for these human diseases. TLR5 (Toll-like receptor 5) stimulation by its specific ligand, the bacterial protein flagellin, has been proposed to enhance protection against several respiratory infectious diseases, although other cellular events, such as calcium signaling, may also control the intensity of the innate immune response. Here, we investigated the molecular events prompted by stimulation with flagellin and its role in regulating innate immunity in the lung of the pig, which is anatomically and genetically more similar to humans than rodent models. We found that flagellin treatment modulated NF-κB signaling and intracellular calcium homeostasis in airway epithelial cells. Flagellin pretreatment reduced the NF-κB nuclear translocation and the expression of proinflammatory cytokines to a second flagellin stimulus as well as to Pseudomonas aeruginosa infection. Moreover, in vivo administration of flagellin decreased the severity of P. aeruginosa-induced pneumonia. Then we confirmed these beneficial effects of flagellin in a pathological model of CF by using ex vivo precision-cut lung slices from a CF pigz model. These results provide evidence that flagellin treatment contributes to a better regulation of the inflammatory response in inflammatory lung diseases such as CF.


Assuntos
Flagelina/farmacologia , Inflamação/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Animais , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Flagelina/imunologia , Flagelina/metabolismo , Imunidade Inata/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Transdução de Sinais/efeitos dos fármacos , Suínos
7.
Front Cell Infect Microbiol ; 10: 632556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33614532

RESUMO

Coccidiosis is a widespread intestinal disease of poultry caused by a parasite of the genus Eimeria. Eimeria tenella, is one of the most virulent species that specifically colonizes the caeca, an organ which harbors a rich and complex microbiota. Our objective was to study the impact of the intestinal microbiota on parasite infection and development using an original model of germ-free broilers. We observed that germ-free chickens presented significantly much lower load of oocysts in caecal contents than conventional chickens. This decrease in parasite load was measurable in caecal tissue by RT-qPCR at early time points. Histological analysis revealed the presence of much less first (day 2pi) and second generation schizonts (day 3.5pi) in germ-free chickens than conventional chickens. Indeed, at day 3.5pi, second generation schizonts were respectively immature only in germ-free chickens suggesting a lengthening of the asexual phase of the parasite in the absence of microbiota. Accordingly to the consequence of this lengthening, a delay in specific gamete gene expressions, and a reduction of gamete detection by histological analysis in caeca of germ-free chickens were observed. These differences in parasite load might result from an initial reduction of the excystation efficiency of the parasite in the gut of germ-free chickens. However, as bile salts involved in the excystation step led to an even higher excystation efficiency in germ-free compared to conventional chickens, this result could not explain the difference in parasite load. Interestingly, when we shunted the excystation step in vivo by infecting chickens with sporozoites using the cloacal route of inoculation, parasite invasion was similar in germ-free and in conventional chickens but still resulted in significantly lower parasite load in germ-free chickens at day 7pi. Overall, these data highlighted that the absence of intestinal microbiota alters E. tenella replication. Strategies to modulate the microbiota and/or its metabolites could therefore be an alternative approach to limit the negative impact of coccidiosis in poultry.


Assuntos
Eimeria tenella , Microbioma Gastrointestinal , Parasitos , Doenças das Aves Domésticas , Animais , Galinhas
8.
Vet Res ; 48(1): 73, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116026

RESUMO

Achieving the control of bovine tuberculosis (bTB) would require the discovery of an efficient combined immunodiagnostic and vaccine strategy. Since in vivo experiments on cattle are not ethically and economically acceptable there is a need for a cost-effective animal model capable of reproducing, as closely as possible, the physiopathology of bTB to (i) better characterize the cellular and molecular features of bTB immunopathogenesis and (ii) screen preclinical vaccine candidates. To develop such a model, we focused on the C3HeB/FeJ Kramnik's mouse forming hypoxic, encapsulated granulomas with a caseous necrotic center following Mycobacterium tuberculosis infection. Our work represents the first investigation on C3HeB/FeJ interaction with M. bovis, the main agent of bTB. Detailed histopathological analysis of C3HeB/FeJ lung lesions development following aerogenous M. bovis infection unraveled a bimodal evolution of the pathology. The C3HeB/FeJ recapitulated all the hallmarks of classical bovine lung granulomas but also developed, to some extend, lethal necrotic large lesions characterized by high mycobacterial and neutrophil load, and an inefficient collagen-driven lesion encapsulation. Interestingly these rapidly invasive pneumonia lesions, occurring in a constant percentage of the mice, shared all features with some exacerbated lung lesions that we and others have observed in lungs of cattle naturally or experimentally infected with M. bovis. Together, our findings demonstrate the relevance of the C3HeB/FeJ mouse as a comprehensive model to study bTB immunopathology that could be used for further vaccine therapies in the future.


Assuntos
Pulmão/patologia , Mycobacterium bovis/fisiologia , Tuberculose Bovina/patologia , Animais , Bovinos , Modelos Animais de Doenças , Granuloma/microbiologia , Granuloma/patologia , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos , Tuberculose Bovina/microbiologia , Tuberculose Bovina/fisiopatologia
9.
PLoS One ; 11(12): e0168577, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992534

RESUMO

The main features of lung infection and inflammation are a massive recruitment of neutrophils and the subsequent release of neutrophil serine proteases (NSPs). Anti-infectious and/or anti-inflammatory treatments must be tested on a suitable animal model. Mice models do not replicate several aspects of human lung disease. This is particularly true for cystic fibrosis (CF), which has led the scientific community to a search for new animal models. We have shown that mice are not appropriate for characterizing drugs targeting neutrophil-dependent inflammation and that pig neutrophils and their NSPs are similar to their human homologues. We induced acute neutrophilic inflammatory responses in pig lungs using Pseudomonas aeruginosa, an opportunistic respiratory pathogen. Blood samples, nasal swabs and bronchoalveolar lavage fluids (BALFs) were collected at 0, 3, 6 and 24 h post-insfection (p.i.) and biochemical parameters, serum and BAL cytokines, bacterial cultures and neutrophil activity were evaluated. The release of proinflammatory mediators, biochemical and hematological blood parameters, cell recruitment and bronchial reactivity, peaked at 6h p.i.. We also used synthetic substrates specific for human neutrophil proteases to show that the activity of pig NSPs in BALFs increased. These proteases were also detected at the surface of lung neutrophils using anti-human NSP antibodies. Pseudomonas aeruginosa-induced lung infection in pigs results in a neutrophilic response similar to that described for cystic fibrosis and ventilator-associated pneumonia in humans. Altogether, this indicates that the pig is an appropriate model for testing anti-infectious and/or anti-inflammatory drugs to combat adverse proteolytic effects of neutrophil in human lung diseases.


Assuntos
Modelos Animais de Doenças , Neutrófilos/enzimologia , Infecções por Pseudomonas/imunologia , Serina Proteases/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/microbiologia , Quimiocinas/sangue , Citocinas/sangue , Humanos , Camundongos , Nariz/imunologia , Nariz/microbiologia , Infecções por Pseudomonas/enzimologia , Pseudomonas aeruginosa , Suínos
10.
Vet Microbiol ; 195: 9-16, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27771076

RESUMO

The dynamics between Mycobacterium avium subspecies paratuberculosis (MAP) infection and the immune response of goats naturally exposed to MAP were studied in a herd where the clinical expression of paratuberculosis had been observed. Four generations of goats were observed over a 33-month period: mothers of three different generations (G1, G2, G3) and their daughters, generation 4 (G4). A MAP infection status was defined according to the combined results of an IFN-γ assay, antibody response, faecal culture and post-mortem examination. Goats were defined as non-infected (NI), infected and non-shedder (INS), infected and shedder (IS) or atypical (A). Twenty-nine percent of goats were NI, 66% were infected and either shedding (14%) or not shedding (52%) MAP, and 5% were atypical. IFN-γ responses were detected first, followed by faecal shedding and antibody responses. The results showed that in goats naturally exposed to MAP, IFN-γ responses were regularly detected earlier in non-shedders than in young infected shedder goats and were stronger in shedder than in non-shedder goats. They were also higher in the mother goats than in their daughters. Goats shedding MAP or with positive antibody response at the beginning of their pregnancy are more likely to have an infected daughter positive to an IFN-γ assay by the age of 15 months.


Assuntos
Doenças das Cabras/microbiologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/transmissão , Complicações Infecciosas na Gravidez/veterinária , Animais , Anticorpos Antibacterianos/sangue , Derrame de Bactérias , Fezes/microbiologia , Feminino , Doenças das Cabras/sangue , Doenças das Cabras/transmissão , Cabras , Interferon gama/sangue , Estudos Longitudinais , Paratuberculose/sangue , Gravidez , Complicações Infecciosas na Gravidez/sangue , Complicações Infecciosas na Gravidez/microbiologia
11.
PLoS One ; 11(5): e0154860, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168325

RESUMO

Enteric infections caused by Chlamydia (C.) psittaci are frequent in ducks, but mostly remain subclinical under field conditions. To emulate natural infection, we investigated the pathogenic potential of a C. psittaci field strain in orally inoculated 4-day-old ducklings. Three different challenge doses were tested and seven contact animals were also mock-inoculated with buffer in each group. Over the course of ten days, the birds were monitored for clinical symptoms and chlamydial dissemination before final examination of tissues using histopathology and immunohistochemistry. While the challenge strain disseminated systemically to all internal organs, mild signs of diarrhea were confined to ducklings inoculated with the highest dose (4.3 x 108 IFU/mL, Group 1). No other clinical symptoms or histopathological lesions were seen. The chlamydial load in internal organs as measured by PCR depended on the challenge dose and was unevenly distributed, i.e. high loads in spleen, liver, and distal small and large intestinal tract (ileum, cecum and rectum) vs. ten times lower values in lungs and proximal small intestinal tract (duodenum and jejunum). Notably, the C. psittaci infection of contact birds became evident on day 10 post-infection, with bacterial loads comparable to those of experimentally-infected animals, thus suggesting rapid bird-to-bird transmission of the challenge strain.


Assuntos
Chlamydophila psittaci/fisiologia , Patos/microbiologia , Psitacose/transmissão , Psitacose/veterinária , Animais , Carga Bacteriana , Chlamydophila psittaci/genética , Chlamydophila psittaci/isolamento & purificação , Imuno-Histoquímica , Especificidade de Órgãos , Psitacose/microbiologia , Psitacose/patologia
12.
J Immunol ; 196(2): 803-12, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26685206

RESUMO

The cytokine IL-17A has been shown to play critical roles in host defense against bacterial and fungal infections at different epithelial sites, but its role in the defense of the mammary gland (MG) has seldom been investigated, although infections of the MG constitute the main pathology afflicting dairy cows. In this study, we showed that IL-17A contributes to the defense of the MG against Escherichia coli infection by using a mouse mastitis model. After inoculation of the MG with a mastitis-causing E. coli strain, the bacterial load increased rapidly, triggering an intense influx of leukocytes into mammary tissue and increased concentrations of IL-6, IL-22, TNF-α, and IL-10. Neutrophils were the first cells that migrated intensely to the mammary tissue, in line with an early production of CXCL2. Depletion of neutrophils induced an increased mammary bacterial load. There was a significant increase of IL-17-containing CD4(+) αß T lymphocyte numbers in infected glands. Depletion of IL-17A correlated with an increased bacterial colonization and IL-10 production. Intramammary infusion of IL-17A at the onset of infection was associated with markedly decreased bacterial numbers, decreased IL-10 production, and increased neutrophil recruitment. Depletion of CD25(+) regulatory T cells correlated with a decreased production of IL-10 and a reduced bacterial load. These results indicate that IL-17A is an important effector of MG immunity to E. coli and suggest that an early increased local production of IL-17A would improve the outcome of infection. These findings point to a new lead to the development of vaccines against mastitis.


Assuntos
Infecções por Escherichia coli/imunologia , Interleucina-17/imunologia , Mastite/imunologia , Animais , Citocinas/análise , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Escherichia coli , Feminino , Citometria de Fluxo , Imuno-Histoquímica , Glândulas Mamárias Animais/imunologia , Camundongos , Camundongos Endogâmicos C57BL
13.
PLoS Pathog ; 11(8): e1005077, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26248157

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting a wide range of mammalian species. They are caused by prions, a proteinaceous pathogen essentially composed of PrPSc, an abnormal isoform of the host encoded cellular prion protein PrPC. Constrained steric interactions between PrPSc and PrPC are thought to provide prions with species specificity, and to control cross-species transmission into other host populations, including humans. Transgenetic expression of foreign PrP genes has been successfully and widely used to overcome the recognized resistance of mouse to foreign TSE sources. Rabbit is one of the species that exhibit a pronounced resistance to TSEs. Most attempts to infect experimentally rabbit have failed, except after inoculation with cell-free generated rabbit prions. To gain insights on the molecular determinants of the relative resistance of rabbits to prions, we generated transgenic rabbits expressing the susceptible V136R154Q171 allele of the ovine PRNP gene on a rabbit wild type PRNP New Zealand background and assessed their experimental susceptibility to scrapie prions. All transgenic animals developed a typical TSE 6-8 months after intracerebral inoculation, whereas wild type rabbits remained healthy more than 700 days after inoculation. Despite the endogenous presence of rabbit PrPC, only ovine PrPSc was detectable in the brains of diseased animals. Collectively these data indicate that the low susceptibility of rabbits to prion infection is not enciphered within their non-PrP genetic background.


Assuntos
Proteínas PrPC/genética , Scrapie/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Feminino , Immunoblotting , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Especificidade da Espécie
14.
PLoS One ; 8(5): e63471, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23696826

RESUMO

Infectious mastitis cuts down milk production profitability and is a major animal welfare problem. Bacteria-induced inflammation in the mammary gland (MG) is driven by innate immunity, but adaptive immunity can modulate the innate response. Several studies have shown that it is possible to elicit inflammation in the MG by sensitization to an antigen subsequently infused into the lumen of the gland. The objective of our study was to characterize the inflammation triggered in the MG of cows sensitized to ovalbumin, by identifying the cytokines and chemokines likely to play a part in the reaction. Among immunized cows, responders mobilized locally high numbers of leukocytes. An overexpression of the genes encoding IL-17a, IL-17F, IL-21, IL-22 and INF-γ was found in milk cell RNA extracts in the early phase of the inflammatory response. At the protein level, IL-17A was detected in milk as soon as the first sampling time (8 h post-challenge), and both IL-17A and IFN-γ concentrations peaked at 12 to 24 h post-challenge. In mammary tissue from challenged quarters, overexpression of the genes encoding IL-17A, IL-17F, IL-21, IL-22, IL-26 and IFN-γ was observed. Neutrophil-attracting chemokines (CXCL3 and CXCL8) were found in milk, and overexpressed transcripts of chemokines attracting lymphocytes and other mononuclear leukocytes (CXCL10, CCL2, CCL5, CCL20) were detected in mammary tissue. Expression of IL-17A, as revealed by immunohistochemistry, was located in epithelial cells, in leukocytes in the connective tissue and in association with the epithelium, and in migrated alveolar leukocytes of challenged quarters. Altogether, these results show that antigen-specific inflammation in the MG was characterized by the production of IL-17 and IFN-γ. The orientation of the inflammatory response induced by the antigen-specific response has the potential to strongly impact the outcome of bacterial infections of the MG.


Assuntos
Inflamação/metabolismo , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Animais , Bovinos , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucinas/metabolismo , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Humanas , Leite/metabolismo , Ovalbumina/toxicidade
15.
Vet Immunol Immunopathol ; 145(3-4): 611-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22297149

RESUMO

Human amebiasis is caused by the protozoan Entamoeba histolytica. This protozoan is responsible for muco-hemorrhagic diarrhoea and liver abscess in affected populations. E. histolytica can be asymptomatic commensally confined to the intestinal lumen or can result in invasion of the colonic mucosa leading to ulceration and/or liver abscesses. Recently, human colonic explants have been identified as valuable in the study of host-parasite interactions. Here we investigated the potential of porcine colonic explants as an alternative to human tissues which are far less available. Porcine colonic explants were cultured with two strains of E. histolytica, one virulent (HM1:IMSS) and one avirulent (Rahman). Results from histopathological and real-time PCR analysis showed that porcine explants cultured with virulent ameba trophozoites react similarly to their human counterparts with an invasion of the tissue by the trophozoites and the triggering of typical innate immune response against the parasite. On the contrary, explants cultured with avirulent ameba trophozoites were preserved. The study open the way to the use of porcine colonic explants in the study of the complex interactions between the parasite and the host.


Assuntos
Colo/parasitologia , Entamoeba histolytica/imunologia , Interações Hospedeiro-Parasita/imunologia , Animais , Quimiocinas/genética , Colo/imunologia , Humanos , Imunidade Inata , RNA Mensageiro/análise , Suínos
16.
PLoS One ; 6(12): e28795, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205970

RESUMO

BACKGROUND: Entamoeba histolytica is an important parasite of the human intestine. Its life cycle is monoxenous with two stages: (i) the trophozoite, growing in the intestine and (ii) the cyst corresponding to the dissemination stage. The trophozoite in the intestine can live as a commensal leading to asymptomatic infection or as a tissue invasive form producing mucosal ulcers and liver abscesses. There is no animal model mimicking the whole disease cycle. Most of the biological information on E. histolytica has been obtained from trophozoite adapted to axenic culture. The reproduction of intestinal amebiasis in an animal model is difficult while for liver amebiasis there are well-described rodent models. During this study, we worked on the assessment of pigs as a new potential model to study amebiasis. METHODOLOGY/PRINCIPAL FINDINGS: We first co-cultured trophozoites of E. histolytica with porcine colonic fragments and observed a disruption of the mucosal architecture. Then, we showed that outbred pigs can be used to reproduce some lesions associated with human amebiasis. A detailed analysis was performed using a washed closed-jejunal loops model. In loops inoculated with virulent amebas a severe acute ulcerative jejunitis was observed with large hemorrhagic lesions 14 days post-inoculation associated with the presence of the trophozoites in the depth of the mucosa in two out four animals. Furthermore, typical large sized hepatic abscesses were observed in the liver of one animal 7 days post-injection in the portal vein and the liver parenchyma. CONCLUSIONS: The pig model could help with simultaneously studying intestinal and extraintestinal lesion development.


Assuntos
Modelos Animais de Doenças , Disenteria Amebiana , Suínos , Animais , Técnicas de Cocultura , Colo/citologia , Colo/parasitologia , Disenteria Amebiana/parasitologia , Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/patogenicidade , Feminino , Humanos , Injeções , Jejuno/citologia , Jejuno/parasitologia , Abscesso Hepático Amebiano/parasitologia , Veia Porta/parasitologia , Fatores de Tempo , Trofozoítos/fisiologia
17.
Mol Immunol ; 45(15): 4020-7, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18657861

RESUMO

Bovine milk is known to exert a potent chemotactic activity on neutrophils, but the responsible agent has not been identified. The objective of the study was to characterize the main biochemical component responsible for this chemotactic activity. A neutrophil shape change assay was used to locate active milk fractions separated by chromatography. A single protein was isolated and identified by amino acid sequencing and mass spectrometry as CXCL3. Recombinant bovine chemokines and specific antibodies were used to show that normal milk contains active concentrations of CXCL1 (1-5ng/ml) and CXCL3 (100-500ng/ml), whereas CXCL2 and CXCL8/IL-8 were not detected. Depletion experiments with antibodies showed that CXCL3 was the main chemotaxin for neutrophils in normal (non-mastitic) milk. The chemokine CXCL3 was located by immunohistochemistry in mammary epithelial cells, and abundant mRNA was found in uninflamed mammary tissue, suggesting constitutive secretion by the lactating mammary epithelium. These results indicate that CXCL3/GRO-gamma is the major chemotactic factor for neutrophils in bovine milk in the absence of inflammation, and that it is secreted constitutively in milk by mammary epithelial cells. This finding prompts the question of the biological significance of permanent high concentrations of a CXC chemokine in milk.


Assuntos
Quimiocinas CXC/imunologia , Quimiotaxia , Leite/imunologia , Neutrófilos/imunologia , Animais , Bovinos , Quimiocinas CXC/biossíntese , Ensaio de Imunoadsorção Enzimática , Feminino , Imuno-Histoquímica , Glândulas Mamárias Animais/metabolismo , Leite/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...